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Scalar Product and Distance

If we want to do geometry, we need the notion of distance. So, we need
no excuse to study this notion. But we will generalize it so much in this
chapter, that you may come to think why do we take such a disturbance... In
a more abstract setting, sometimes we want to approximate a complex object
by a simpler representative. In that case, we should choose the representative
whose distance to the original object is minimum.

But let’s start out with our old and dear Rn. The scalar product (also
called dot product) of two vectors u and v is defined as

u · v = u1v1 + u2v2 + · · ·+ unvn =

n
∑

i=1

uivi

This is the obvious generalization of the dot product in R2 and R3. It
is rather obvious that u · v = u · u, right? And also some other things, like
u ·u ≥ 0 (see why?). This is rather important, because the length (or norm)
of a vector v in Rn is defined by

‖v‖2 = v · v =
n

∑

i=1

v2
i

Why that? In R2 and R3 it came natural, through Pythagoras theorem.
So it’s just the natural generalization, right?

A unit vector is one with unit length. Any vector can be normalized,
dividing by its norm. See that for a unit vector only the direction is important.

E1. (Rather trivial one, just to check out) Pick up a vector of R4. For
example, (2, 1, 0,−2). Now, compute its length and normalize it.

—  —
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E2. Prove that the dot product between two vectors can be written like
u · v = uT v.

If u and v are the vectors representing two points in any vector space,
then v − u is the vector which takes from u to v. That’s clear, no? Then, the
distance between u and v is the length of the difference vector:

d(u, v) = ‖v − u‖
If you expand it, it means in R3:

d(u, v) =
√

(v1 − u1)2 + (v2 − u2)2 + (v3 − u3)2

Orthogonality and Angles

Normal people would say perpendicular, but mathematicians are like this,
you know, and will prefer orthogonal. It’s just the same.
I give you two vectors u and v. In symbols, we’ll say u ⊥ v when they

are orthogonal. But, how to know when they are? Take a look at figure 3.
We have drawn u and v, orthogonal. But we have also depicted −v. It’s just
geometry: if u and v are orthogonal, then d(u, v) = d(u,−v). Take a look and
convince yourself...

u

v

−v

Figure 3. When u ⊥ v, d(u, v) = d(u,−v).

Now, a little bit of algebraic manipulation, and we’ll find the condition for
orthogonality. This idea of d(u, v) = d(u,−v) is the key!

d(u, v)2 = ‖u − v‖2 = (u − v) · (u − v) =

Using the distributive property we see that:

= u · u+ v · v − 2u · v = ‖u‖2 + ‖v‖2 − 2u · v
OK, no more simplification can be done. Now, let’s check d(u,−v):
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d(u,−v)2 = ‖u − (−v)‖2 = (u+ v) · (u+ v) = ‖u‖2 + ‖v‖2 + 2u · v

Take a look at both expressions. They are the same if and only if u·v = 0!!
So, we conclude that two vectors are orthogonal when their inner product is
zero. Moreover, we have a very intrincate proof of Pythagoras theorem! If
u ⊥ v, d(u, v) = ‖u‖2 + ‖v‖2...

E3. Find a vector which is orthogonal to (1, 2,−2, 0).

For sure you remember from R2 and R3 the old formula:

u · v = ‖u‖ · ‖v‖ · cos(α)

where α is the angle between u and v. This formula can be extended to any
vector space with inner product, thus defining angles in a very general setting.
Notice that, if two vectors are orthogonal, then α = π/2, thus cos(α) = 0 and,
therefore, u · v = 0, as we said before. Angles will not play a very important
role here, but at least you should be able to find them...

Orthogonal Complement

For a vector v, its orthogonal complement is the set of vectors which are
orthogonal to it. It happens to be a subspace of the full vector space, of course.
For example, let’s find the orthogonal complement of vector (1, 0,−1) in R3.
Let us consider an arbitrary vector (x, y, z). The condition for orthogonality is

0 = (1, 0,−1) · (x, y, z) = x − z

So we have a plane, x−z = 0. In general, ifW is a subspace, its orthogonal
complement W⊥ is the set of vectors which are orthogonal to all vectors in W.
Uff... this requires an example, at least!
For example, find the orthogonal complement of the plane π, given by

x − z = 0 in R3. This is the set of all vectors which are perpendicular to
the plane. A plane is determined by two directions. Therefore, in R3, there
is a single direction left. This means that the orthogonal complement of a
plane must be a line. Which line? OK, the equation x − z = 0 is a way of
saying that all vectors of the plane are perpendicular to (1, 0,−1). Therefore,
π⊥ = Span(1, 0,−1).
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Q1. If you’re working on a vector space of dimension n and W is a
subspace of dimension d, which is the dimension of W⊥?

E4. Find in R3 the orthogonal complement of the subspace given by
Span(1, 2,−3).

Now, what to do for more general subspaces? For example, a plane π

spanned by vectors a1 and a2, π = Span(a1, a2). Then, we are asked for the
set of vectors X which are orthogonal to all vectors of the plane. An equivalent
condition is to ask for the set of vectors which are orthogonal both to a1 and
a2:

{

a1 · X = 0

a2 · X = 0

As usual, we call A the matrix which contains a1 and a2 as columns. So,
AT is the matrix whose rows are a1 and a2, right? Then, the previous set of
equations is equivalent to

ATX = 0

(check it!) So, we only have to solve that homogeneous system in order to
obtain the orthogonal complement of any subspace!

E5. Find the orthogonal complement of the subspace spanned by the
vectors (1, 0, 0) and (1, 1, 0). Is it reasonable?

Generalizing the Scalar Product

This notion of distance can be very useful also outside geometry. For
example, imagine that we’re working on a vector space of functions. We have
a complicated function, like cos(

√
ex + 1) or something like that. We wish we

had a polynomial, because polynomials are nice both for analytical and for
numerical work, instead of that monster. The monster is not a polynomial, no
matter how much you look at it. But you can find the polynomial, of a given
degree, which is closest to that function. That’s where we are going to, ok?
This means that we should find out what is the essence of distance, in order

to generalize it. Experience has shown us that the most appropriate concept
to generlize was that of dot product, which we promote to something we will
call inner product. We’ll give now a rather formal definition of that thing.
Let V be any vector space,
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• A binary operation “〈u, v〉” mapping V × V into R on a vector space is
an inner product if it fulfills the following conditions:
1. Symmetry: 〈u, v〉 = 〈v, u〉.
2. Distributive property: 〈(u+ v), w〉 = 〈u, w〉 + 〈v, w〉.
3. Product with numbers: 〈cu, v〉 = 〈u, cv〉 = c 〈u, v〉.
4. Positivity: 〈u, u〉 ≥ 0, and 〈u, u〉 = 0 if and only if u = 0.

For example, we can define a new inner product on R2:

〈u, v〉 ≡ 4u1v1 + 5u2v2

Who says that’s not a fine inner product? It is, you can check all four
properties. But it is also hard to imagine how come it can be useful for anything.
Believe me: it can. We will reserve the dot, u·v for the old and venerable scalar
product in Rn.

Inner Product in Functional Spaces

OK, then, let us play a little bit with a vector space of real functions,
defined on a certain interval [a, b]. Remember a little bit of naming conventions.
We call C[a, b] the vector space of continuous real functions on [a, b], ok?
We’re practical people, so we can imagine the functions to be “discretized”.

This means that we only consider the values at some points, xi = a, equally
spaced on [a, b]. Let’s assume that there are n of them. So the function is
completely described by giving the values at those n points: {f(xi)}, ok? Look
at figure 1 for a glimpse. We can imagine all those n values displayed on a very
long vector:

0

1

x0 x1 x2 x3 x4

Figure 1. A discretized function.

f = (f(x1), f(x2), f(x3), · · · , f(xn))

The vector is equivalent to the function! So, now let’s consider that we
have two functions, f and g. We can start by defining their inner product
employing just the normal Rn dot product:
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〈f, g〉 =
n

∑

i=1

f(xi) · g(xi)

For the same price, we can multiply the product into ∆x, and get another
inner product which is equivalent:

〈f, g〉 =
n

∑

i=1

f(xi) · g(xi)∆x

This last inner product has a nice advantage. When you take the limit
n → ∞, to reach the continuum, then the sum becomes an integral!

〈f, g〉 →
∫ b

a

f(x)g(x)dx

This way we can define the “length” of a function:

‖f‖2 =

∫ b

a

[f(x)]2dx

which is, obviously, greater than zero.

E6. Calculate the inner product of f(x) = x and g(x) = x−1 as functions
of C[0, 1].

I would love to show you applications of this fast fast, but let’s take it easy.
Consider the vector space C[0, 1]. In them, we select the function f(x) = cos(x),
and functions g(x) = sin(x) and h(x) = 1− x2/2. Which one is closer to f? If
you had to substitute f for one of them, which one to pick? Just imagine that
they’re points in R2. Then you would find out how much is the distance from
f to g, ‖f − g‖, and compare it to ‖f− h‖. Let’s do it!

‖f − g‖2 =

∫ 1

0

(cos(x)− sin(x))2dx ≈ 0.3

(do the integral, or just believe me for now). On the other hand,

‖f − h‖2 =

∫ 1

0

(cos(x)− 1+ x2/2)2dx ≈ 2 · 10−4

So, it is apparent that functions cos(x) and 1 − x2/2 are really close in
[0, 1]. You may try to repeat the experiment on [0, 2π] and it does not come
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0
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Figure 2. The functions f(x) = cos(x) (thicker line), g(x) = sin(x) and
h(x) = 1 − x2/2, in the interval [0, 2]. Notice that, in the interval [0, 1], f and
h are almost indistinguishable.

so nicely. Why? Simple! 1 − x2/2 is a Taylor approximation of cos(x) around
x = 0, so it will only work for small intervals around that point... In figure 2
you may see all three functions and understand better...
Ah, it may seem to you that integration makes the process difficult, but

this is not completely true. With computers, integration is a pretty trivial task,
believe me. It is hard only when you work with pencil and paper. So, for many
practical applications, when you reduce it to an integral... ok, you’re done!

E7. Find, on C[0, 1], the distance between f(x) = 1 and g(x) = 1+ x.

E8. Find the straight line passing through the origin which is closest to
exp(x) on [0, 1] Compare it with the Taylor approximation to first order.

What do you deduce? This is important!!

Functions can also be orthogonal, why not? :) Any couple of objects can,
if only you have defined an inner product beforehand...

E9. Find a function in C[0, 1] which is orthogonal to f(x) = 1. Caution:
orthogonality of function

E10. Find the angle formed by sin(x) and cos(x) on C[0, π/2] and on
C[0, 2π].

Inner Product in Complex Vector Spaces

When complex numbers appear, i.e.: Cn spaces, you need to take special
care... The reason is that lengths should be real and positive numbers, right?
In the case of Rn, it’s immediate, because the usual scalar product is the sum
of square numbers. But in Cn, the square of a number is not necessarily a real
positive number, right? For example, i2 = −1. What to do?
It’s not difficult. The modulus of a complex number is always a real
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positive number. So, |i|2 = 1, that’s ok. But, how to take that modulus thing
to the scalar product? This is little bit more tricky.
There is nice formula you should take into account. For any complex

number z, z∗z = |z|2, where z∗ is the complex conjugate of z. I remind you
that the complex conjugate is obtained by substituting i by −i. For example,
if z = 3+ 4i, z∗ = 3− 4i, that’s all. Now, |z|2 = 32 + 42 = 25, so |z| = 5. Why
don’t you check that you get the same result with the new formula? Anyway,
we prove it in general. It’s easy. If z = a+ ib,

z∗z = (a− ib)(a+ ib) = a2+a · ib− ib ·a− ib ·ib= a2− i2b2 = a2+b2 = |z|2

So, now we state the rule for the inner product in Cn: you take the
complex conjugate of the first vector, and do as always! In other terms, if u
and v are vectors of Cn,

〈u, v〉 ≡
n

∑

i=1

u∗
ivi

But you might say, then 〈u, v〉 6= 〈v, u〉, since we’re taking the complex
conjugate of only the first vector. And you would be fully right. It happens
that 〈u, v〉∗ = 〈v, u〉. Check it! So the properties of an inner product change a
little bit when we have a complex vector space...
Let’s have some practice... Let’s compute the scalar product of u = (1, i)

and v = (i,−1)...

〈u, v〉 = (1)∗ · i+ (i)∗ · (−1) = i+ (−i) · (−1) = 2i

So, they are not orthogonal!

E11. Given u = (1 + i, 1 − i) and v = (0, i), compute 〈u, v〉 and 〈v, u〉.
What is the relation between them?

E12. Find a vector which is orthogonal to v = (0, i).

Adjoint Operator

We defined the transpose of a matrix (AT )ij = Aji, just by reflecting the
elements on the diagonal. But there is a deeper meaning of the transpose. A
deeper meaning deserves a catchier name, so we will call it adjoint, and it is
related to the inner product.
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For any operator A we define A†, the adjoint operator, such that

〈

A†u, v
〉

= 〈u, Av〉

If the inner product is just the usual dot product in Rn, then this role is
played by the transpose. You can check it as an exercise.

E13. Check that, in Rn with the usual dot product, the adjoint of an
operator coincides with its transpose.

E14. Find the expression of the adjoint of an operator in R2, given by a
matrix Aij, with the inner product given by 〈u, v〉 = 2u1v1 + 3u2v2.

If a matrix is symmetric, then AT = A: Aij = Aji. The obvious general-
ization takes place when an operator coincides with its adjoint. Again, a new
name is given, and we say the operator is hermitean or self-adjoint: A† = A.

E15. Consider the complex vector space C2. Find the hermitean con-
jugate of a general 2 × 2 matrix with complex entries. Do you think you

can generalize?

What can be the interest of the adjoint operator? Same as the transpose
in the old “Rn+ dot product” case! And what is the interest of the transpose?
Take a look back at the orthogonal complement section. We deduced that, for
any operator (matrix) A, the solution of the equation AT X = 0 is the set of
vectors X which are orthogonal to the subspace spanned by the columns of A.
In other words:

ATX = 0 ⇔ X ⊥ Col (A)


