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MARKOV PROCESSES

Imagine a house with three rooms, A, B and C. People can wander around
the three rooms, but it has been checked that, after one minute, 20% of the
people in room A will go to room B, 30% of the people will move to room C,
and the rest will remain there. Similar numbers hold for the rest of the rooms,
so we can display the numbers in a table:

A B C
A (05 01 04
B|02 06 02
C\03 03 04

The table must be read with the row as the “from” and he column as the
“to”. So, the fraction of people going from room C to room A after one minute
is 0.4. Notice that all columns add up to one. This is in agreement with Geneva
convention that no people should be killed in mathematical processes.

We know that there are 1000 people in room A. After some minutes,
where will those people be? 20% will have moved to B and 30% to C, so we
get A = 500, B = 200 and C = 300. Now we wait for another minute. Then,
the people from A will have spread further: 250 will remain, 100 will move to
B and 150 to C. But people from B will also move! They were 200, and 60%
will remain, so 120 people will stay. 10% of the people at B will move to A, so
we have 10% of 200, 20 people. And 30% of them will move to C, so 60 people
will go. And now, C... this is boring, but let’s finish it out. 40% of the people
at C will go to A, so 40% of 300 is 120. 20% will go to B, so 60. And the
remaining 40% will stay, so 120 people... now we have to sum up!!

New people at A: people remaining at A + people coming from B + people
coming from C: 250 + 20 + 120 = 390.

New people at B: people remaining at B + people coming from A + people
coming from C: 120 4+ 100 + 120 = 340.

New people at C: people remaining at C + people coming from A + people
coming from B: 120 + 150 4+ 60 = 330.

Uff... This way is hard to follow. Let’s invent a better one. We can put all
three values in a vector. This way, the starting distribution of people would be
given by P(0) = (1000,0,0). After one minute we have P(1) = (500, 200, 300)
and after another minute we get P(2) = (390, 340, 330).

How to obtain a vector from the previous one? Easy: just multiply the
matrix we wrote above by the vector. Let’s try it out:

0.5 0.1 04 1000 500
0.2 06 0.2 0 = | 200
03 03 04 0 300

In general terms, if we call M to that matrix, we have

P(t+1) =M. P(t)

The interpretation in terms of population has a problem. After a few
more time steps, the numbers get fractional. We should interpret P(t) as a
probability vector, a vector with all positive entries, normalized so that the
sum of the values is one.

@\ E1l. Find P(3), normalized as a probability vector.

E2. Proof that, if P(t) is a probability vector, P(t + 1) is also. Which
property of M did you need?

Now suppose that we’re asked about the long term behaviour of the system.
For very very long times, we may assume that some kind of equilibrium has
been reached. This does not mean that people are not moving, of course they
will move, but the amount of people at each room will stay more or less the
same. In that moment, P(t+1) and P(t) coincide, so we want to find the vector
Peq such that

MPeq = Peq

So we can say that M, in order to reach equilibrium, must have an eigen-
value 1. Is this true in general? If we substract the identity we get another
matrix

(M —T)Peq =0

So M — I must have nontrivial kernel (or an eigenvalue zero). Let’s solve
that equation in our case. We get that the system is compatible and indeter-
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minate, with solution (surprisingly enough) Ry = Ry = R3. Therefore, in equi-
librium, the system has equal probabilities. Normalizing, R1 = R, = R3 = 1/3.

By the way, stochastic processes like this are called Markov processes.
The probability for the next time-step depends uniquely on the probabilities
at this time: the system has no memory of the past. Also, matrices like M
are called stochastic matrices. The defining properties are that all columns
should add up to one and all entries should be positive. Then, they can be the
associated matrix of a Markov process.

E3. Let’s try another system... Imagine again three states, with transi-
tion probabilities Py, = 0.4, Py .3 = 0.5, P,_,1 = P23 =P3_, =0.1.
Guess intuitively the equilibrium state and find it out exactly.

Imagine that we want to find the complete time evolution for the proba-
bility vector. Then we start by noting that

P(2) =M -P(1) = M- M- P(0) = M?P(0)
And, therefore,

P(n) = M"™P(0)

So, if we can raise the matrix to te appropriate power, we can find exactly
the time evolution of the probability vector! This can be easily done if the
matrix is diagonalizable. Then,

M =SDS™!
where D is diagonal (with, possibly, complex entries) and S need not be unitary.
Then,
M? = SDS~'SDS™" = SD?S~!

Le.: we can compute any power of M by just raising the eigenvalues to that
power. So, let us diagonalize the stochastic matrix. Remember an advantage
that we have: we know that the eigenvalue 1 is there!

E4. Compute the eigenvalues and eigenvectors of the stochastic matrix.
As a check: they are 1, 0.1 and 0.4.

E5. Compute the matrices M? and M'®, and compute P(2) and P(10)
for the given initial vector.

@\ E6. Study again the long term behaviour of the system.

E7. Every year, 2/10 of the population in Madrid move to the rest of
Spain, and 1/10 of the population of Spain move to Madrid. Find the
equilibrium state and the evolution for all time.



