
Rotating the Axes
Orthonormal Basis, Orthogonal Matrices, Gram-Schmidt and QR

Javier Rodŕıguez Laguna, UC3M

Last Update: March 6, 2008

Orthonormal Basis

In any vector space with an inner product, a set of vectors {ui}n
i=1 makes

up an orthogonal set if they’re all mutually perpendicular. In that case,
〈ui, uj〉 = 0 if i 6= j. If each of them has unit norm, then the set is said to be
orthonormal. In that case, we can say

〈ui, uj〉 = δij

The right hand side is the Kronecker’s delta, which is one when i = j and
zero otherwise. Therefore, this equation is really saying that the inner product
of two vectors of the set is zero when they’re different, and one when they’re
the same.
If an orthogonal or orthonormal set makes up a basis for the vector space,

we’ll say it is an orthogonal or orthonormal basis. That’s easy...

How to imagine an orthonormal basis? OK, all of its vectors are perpendic-
ular and have unit norm. Therefore, they’re just like the canonical basis, only
rotated! (and, perhaps, reflected on some mirror). Why should we worry about
them? Because they are much nicer than others! The reason is the following.
Suppose we have a vector v and want to express it in a certain orthonormal
basis {ui}n

i=1,

v = c1u1 + · · ·+ cnun =

n
∑

i=1

ciui

How to obtain the ci? It’s very easy:

ci = 〈v, ui〉

Why? OK, just try to compute it!

—  —

2

〈v, ui〉 =
〈

n
∑

j=1

cjuj, ui

〉

=

n
∑

j=1

cj 〈uj, ui〉

[Notice that we’ve changed the summation index to j, so as not to confuse
it with i.]
But the fundamental feature of an orthonormal set is that all those inner

products are zero but for the one corresponding to ui, which is one. So we get
the desired result. In symbols,

〈v, ui〉 =
n

∑

j=1

cjδj,i = ci

Orthogonal Matrices

If you take the vectors ui of an orthonormal basis and make up a matrix
with them, putting them as columns, U = [u1, · · · , un], then this matrix will
implement the transformation in which e1 (the first vector of the canonical
basis) goes to u1, e2 goes to u2 and so on. As we said before, this trans-
formation is, in general terms, a rotation (possibly with reflections). These
matrices are normally called orthogonal matrices (yes, yes, they should be
called orthonormal, but what to do? this is the standard name!)
The most important property of orthogonal matrices come from the study

of UTU. Remember that the columns of U are the vectors ui. Equivalently,
the rows of UT are the vectors ui. So, now we want to get element ij of UTU.
We have to take column j of U, which is uj. Then, we lay it horizontal and
put it over row i of UT , which is ui. Now, we multiply and add, i.e.: we take
the dot product! But that is 0 if i 6= j, and 1 if they’re equal. So, we get the
identity matrix!

UTU = I

The proof can be reversed, and you get that a matrix is orthogonal if and
only if its inverse coincides with its transpose. (Obviously, if the inner product
is not the dot product, you have to take the adjoint instead of the transpose:
U†U = I.)

E1. An example. Vectors (1, 1) and (1,−1) are orthogonal. Normalize
them so that they make up an orthonormal basis of R2. Now, put them

as columns of matrix U and check that UT U = I.



3 Rotating the Axes

Since the transformation v 7→ Uv is a rotation (with possible reflections),
the length of v must be the same as that of Uv. We will state the more general
property that 〈Ux, Uy〉 = 〈x, y〉.

E2. (Theoretical) To get some practical with summations, try to prove
Ux ·Uy = x ·y, in the case of Rn with the usual dot product. You’ll have

only to express it in terms of summations, and do a strategic interchange...

Let’s try to prove that in general. Let’s return to the idea of orthonormal
basis. Then, if we say that

v =

n
∑

i=1

ciui

Then it is true that v = Uc, where c is the vector made from putting all
the ci in a column, right? Let’s say then also that w = Ud, where a similar
equation holds. Now, let’s compute

〈v, w〉 = 〈Uc, Ud〉
Let’s develop that last thing. If we reach 〈c, d〉, then our theorem is proved!

Let’s go.

〈Uc, Ud〉 =
〈

∑

i

ciui,
∑

j

djuj

〉

Notice that we try not to repeat indices! Now, let’s take out of the inner
product the summations and the constants:

〈Uc, Ud〉 =
∑

i,j

cidj 〈ui, uj〉 =
∑

i,j

cidjδi,j =
∑

i

cidi

and that’s the dot product of vectors c and d!

E3. Use the orthogonal matrix obtained in exercise 1 and check, for any
two vectors x and y that 〈x, y〉 = 〈Ux, Uy〉.

Some Important Orthogonal Matrices

A couple of types of orthogonal matrices are very important. The first
one is rotation matrices. Suppose you’re on R2. Then a counterclockwise
rotation of angle α is implemented by

4

R(α) =

(

cos α − sinα

sinα cos α

)

E4. Prove it with a picture.

E5. Dig up your trigonometry and check that R(α1)R(α2) = R(α1+α2).

If you’re working in R3, then a rotation around the Z axis is written as

Rz(α) =





cosα − sinα 0

sinα cos α 0

0 0 1





E6. What do you think should be the matrix for a rotation around the
X or Y axis?

E7. Reflections on a coordinate plane in R3 can be achieved very easily...
How?

Gram-Schmidt Orthonormalization

So, orthonormal basis are nice... What if we have a basis for a certain
subspace but it is not orthonormal? In principle, all basis should be equivalent,
no? So, perhaps, just for computational purposes, it would be nicer to change
it a little bit, so that it becomes orthonormal. We can do it, the process is
called Gram-Schmidt orthonormalization.
The Gram-Schmidt process starts with a set of vectors {ai}m

i=1 and pro-
duces a new set of vectors {ui}m

i=1 in such a way that the subspace they span
is the same, but the new set is orthonormal. How to do it? Imagine that the
set has a single vector. Then, it would be OK just to normalize it. So,

u1 =
a1

‖a1‖

Now, imagine that a second vector appears. We want to create a u2 which
is a linear combination of a2 and a1, but which is orthogonal to u1. Wait, it
can be also made with a2 and u1, it’s equivalent, no? So, let’s try the following:

û2 = a2 − 〈a2, u1〉u1



5 Rotating the Axes

〈a2, u1〉u1

u1

a2

Figure 1. Obtaining û2.

Why the hat? Because that vector is not yet normalized! And why that ex-
pression? What is it? It’s a projection! You substract from a2 its contribution
from u1. See figure 1. The difference must be orthogonal to u1!
Now, if you compute the inner product of û2 and u1, it’s coming like this:

〈û2, u1〉 = 〈a2 − 〈a2, u1〉u1, u1〉 = 〈a2, u1〉 − 〈a2, u1〉 〈u1, u1〉 = 0

because 〈u1, u1〉 = 0! Now, we normalize û2 in a trivial way, and got the
second vector: u2 = û2/‖û2‖.

E8. Orthonormalize the set of two vectors in R3, a1 = (1, 1, 0) and
a2 = (0, 1, 1).

What to do with a third vector? We have to substract the contribution
from u1 and u2, so:

û3 = a3 − 〈a3, u2〉u2 − 〈a3, u1〉u1

Then, of course, you normalize that vector, u3 = û3/‖û3‖. You can
continue with more vectors, always substracting the contribution from all the
previous ones:

ûk = ak −
n

∑

j=k−1

〈ak, uj〉uj

Let’s do an example. In R4, let’s orthonormalize the set a1 = (1, 1, 0, 0),
a2 = (0, 1, 1, 0) and a3 = (0, 0, 1, 1). We start with u1:

u1 =
1√
2
(1, 1, 0, 0)

Now, we substract from a2 its contribution on u1:

û2 = a2 − 〈a2, u1〉u1 = (0, 1, 1, 0) −
1√
2

1√
2
(1, 1, 0, 0) = (−1/2, 1/2, 1, 0)

6

You can readily check that û2 is orthogonal to a1. Now, let’s normalize
u2:

u2 =
û2

‖û2‖
=

√

2/3(−1/2, 1/2, 1, 0)

Last step: we compute û3:

û3 =a3 − 〈a3, u2〉u2 − 〈a3, u1〉u1 =

=(0, 0, 1, 1) −
√

2/3
√

2/3(−1/2, 1/2, 1, 0) − 0
√

1/2(1, 1, 0, 0)

=(1/3,−1/3, 1/3, 1)

We normalize it and we have finished:

u3 =
û3

‖û3‖
=

√
3

2
(1/3,−1/3, 1/3, 1)

E9. Check that u1, u2, u3 make up an orthonormal set.

E10. Apply the Gram-Schmidt process to orthonormalize the set in R4

given by (1, 1, 1, 1), (0, 1, 1, 1) and (0, 0, 1, 1).

E11. Apply the Gram-Schmidt procedure to the set of vectors {1, x, x2}
of the vector space C[0, 1].

QR Factorization

The Gram-Schmidt process can give us a factorization of a matrix which
is very useful. Any m×n matrix A with linearly independent columns can be
written as QR, where Q is an m×n matrix whose columns are an orthonormal
basis for Col(A) and R is an upper-triangular n × n invertible matrix with
positive entries in the diagonal.
The proof will be constructive, i.e.: we’ll give a rule to build the Q and the

R. Imagine that a1, · · · , an are the columns of A (all of them vectors of R
m).

Then we can orthonormalize the set using the Gram-Schmidt procedure, and
get u1, · · · , un, which make up an orthonormal basis for Col(A). But remember
that, in order to obtain vector uk in the Gram-Schmidt procedure, we need
ak, ak−1 and all others until a1. But we don’t need those vectors which come
after ak. Therefore, it is true that



7 Rotating the Axes

ak = r1ku1 + · · ·+ rkkuk + 0 · uk+1 + · · ·+ 0 · un

Let’s call rk that (column) vector of r’s: rk = (r1k, r2k, · · · , rkk, 0, · · · , 0)T .
Now you can say that ak = Qrk, because you can say that ak is a linear
combination of the columns of Q, with weights given in rk. Then:

A = [a1 · · ·an] = [Qr1 · · ·Qrn] = QR

Where R is a matrix that has the rk as columns. By construction, R is
upper triangular, as we wanted.
Ufff... this was hard. Is this the way we’re going to do it? By no means!

In practice, we can start with Gram-Schmidt orthonormalization, for sure, but
after that we realize that QTQ = I, since Q’s columns are orthonormal. So,
once Q is found,

QTA = QT (QR) = IR = R

So, as an example, we can find the QR factorization of

A =







1 0 0

1 1 0

1 1 1

1 1 1







First of all, we apply Gram-Schmidt to the columns of A, obtaining Q.
The final result is:

Q =







1/2 −3/
√

12 0

1/2 1/
√

12 −2/
√

6

1/2 2/
√

12 1/
√

6

1/2 1/
√

12 1/
√

6







Now, we compute R = QT A and get

R =





2 3/2 1

0 3/
√

12 2/
√

12

0 0 2/
√

6





QR factorization is very often used in numerical calculations. But Gram-
Schmidt, unfortunately, is very unstable for that, so a different technique is
used to obtain it. Ufff, but that’s another story which will be told somewhere
else!

8

E12. Find the QR factorization for the following matrix:





1 0

0 1

1 1






