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Introduction

Line, surface and volume integrals are related through a very beautiful
theorem with three forms. It is globally called Stokes theorem, and is used
extensively in many branches of physics: electromagnetism, fluid mechanics,
gravitation... It is also one of the most beautiful and elegant theorems in
mathematics, if correctly understood. In this text we will try to give the
practical working tool along with an introduction to its depth and beauty...

Gradient and Curl

Let v(x, y, z) be a vector field in R3. We’re asked the following question:
how to know whether it is the gradient of some scalar function? I mean: is
there a certain scalar f(x, y, z), such that v = ∇f?
Not every v is a gradient! To see this, remember that the crossed deriva-

tives should coincide:

∂2f

∂x∂y
=

∂2f

∂y∂x

Therefore, the mixed derivatives of v should coincide:

∂vx

∂y
=

∂vy

∂x

We will adopt a more convenient notation: A,x means the partial derivative
with respect to x of any object. So,

vx,y − vy,x = 0

This should be true for all couples of coordinates: xy, yz and zx. In
principle, in order to summarize, we can write all these three things as a vector:

(vx,y − vy,x, vy,z − vz,y, vz,x − vx,z)

—  —
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If not all three components of this vector are zero, then the vector function
v can’t be the gradient of any function. That’s clear. This vector is going to
be important, so we will give a name to it. We will call it the curl of v, and
denoted normally as ∇× v. Why? Because it can be written in shorthand like

∣

∣

∣

∣

∣

∣

i j k

∂x ∂y ∂z

vx vy vz

∣

∣

∣

∣

∣

∣

An example is in order... Consider the vector field:

v(x, y, z) = (yz, xz, xy)

May this vector field be the gradient of a certain scalar function? Let’s
compute its curl:

∇× v = (z − z, x − x, y − y) = (0, 0, 0)

OK, so it is the gradient of some function. How to obtain it? Let us call
that function f(x, y, z), such that ∇f = v. Then, we know that the partial
derivative of that thing with respect to x is yz. This means that the function
is xyz plus any function in which x does not appear. Let us call that thing
xyz + C1(y, z). Now, the partial derivative with respect to y is xz, so the
function is xyz+ C2(x, z) for the same reason. A little bit of thought gives us
that the function is simply f(x, y, z) = xyz.
(The converse is also true: under very general conditions, if the curl of a

vector field is zero, then it is the gradient of some function. But we won’t get
into proving that now...)

Line Integral of a Gradient

If a vector field is the gradient of a scalar function, then line integrals are
very easy to carry out. Let’s see why. Remember that, if you start at a certain
point r0 and make a small motion dr, then the change in a (scalar) function is
just df = ∇f · dr. So, you can say that

∫

C

∇f · dr =

∫

C

df

you’re adding up the small increments in f along the function! So, if path C

goes from point r0 to r1, the total integral is
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∫

C

∇f · dr = f(r1)− f(r0)

So the line integral depends only on the initial and final points, not on
the exact path! Another conclusion: if you take the line integral of a gradient
along a closed contour, then you get a beautiful zero. We can mix up both
results and say:

• If ∇× v = 0, then the line integral of v along any closed contour is zero.

That’s nice. Now let us remember the physical interpretation of the line
integral of a force field as the work carried out by the force when a particle
moves on a certain trajectory. If the force is the gradient of a certain potential
energy function (we say f = −∇V), then the work only depends on the initial
and final points. We say that the force field is conservative. If the particle
takes a full loop, the total work does not change. Remember that that work
goes into kinetic energy of the particle, so we conclude that, after a loop, the
kinetic energy of the particle is preserved.

E1. Prove that any central force is conservative, i.e.: if the force only
depends on r and is always pointing in the radial line.

But... what is the Curl?

First of all, let us remark one thing: the curl of a vector field can be written
as a vector again only in 3D! We have three conditions because we have three
pairs of variables. In 2D we have only one condition. And, in 4D, we would
have six of them.
Once said that, let us consider a very very small closed circuit Γ in the

xy plane. Starting from point (x, y), it advances dx in the x-direction, then it
advances dy in the y-direction. Then it goes back −dx, and then back −dy.
Thus, it returns to the original point. Look at the picture:

−dx

dx

−dy dy

(x, y)

Figure 1. Line integral on a very small closed circuit.
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Now we’ll attempt to find the line integral of a vector field v along that
circuit. We will assume that the square is so small that, in each edge, the vector
field is constant, and equal to the value of the field at the middle point. So, as
we proceed from point (x, y) we see that those points are: A : (x + dx/2, y),
B : (x+dx, y+dy/2), C : (x+dx/2, y+dy) and D : (x, y+dy/2). The vector
field at each of these points has to be dot-multiplied by the appropriate dr,
which are: (dx, 0), (0, dy), (−dx, 0), (0,−dy). We put all these things together
and get:

∫

Γ

v · dr = vx(A)dx+ vy(B)dy − vx(C)dx − vy(D)dy

We can group the terms with the same differential:

∫

Γ

v · dr = (vx(A)− vx(C))dx+ (vy(B)− vy(D))dy

But, what is the difference between vx(A) and vx(C)? You can write

vx(C) = vx(A) + dy
∂vx(A)

∂y

So, it is just vx,y(A)dy. By the same reason, the other difference is just
vy,x(B)dx. Assuming that the square is so small that, when taking derivatives,
points A and B are equivalent, you get

∫

Γ

v · dr = (vx,y − vy,x)dxdy

Which is the z-component of the curl! So, we get an interpretation of it:
it gives the line integral on a very small square!

What can this be good for? First of all, it can give us a hint to the meaning
of the curl. You can think of it as the amount of “local rotation”

But, what happens with big circuits? First of all, consider what happens
when you have a circuit and you split it into two, as in figure 2.
So we have the original circuit, Γ, and then the “children”: I and II. If

we integrate any vector field on I and II and add up the results, we will find
some interesting cancellation: the “dividing line” will give contributions with
opposite signs for both (dr in one is −dr for the other!), so finally, we get:

∫

Γ

v · dr =

∫

I

v · dr+

∫

II

v · dr
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Figure 2. A circuit split into two.

The same happens if you split a circuit into many internal parts, as it
appears in figure 3. If you sum up the line integral of a vector field on all such
small circuits, the internal boundaries cancel out, and you only get the integral
on the exterior circuit.

Figure 3. A circuit split into many small circuits.

But the internal circuits can be as small as we want. We can make them
even infinitesimal! Then, the circulation on each of them is just given by the
curl. We get the beautiful result which is known as Green’s theorem [1]:

∫

Γ

v · dr =

∫

S

∇× v · dS

where S is any surface bounded by the closed circuit Γ.

E2. Let’s check it out. If Γ is the unit square, compute
∫

Γ
(5 − xy −

y2, 2xy − x2) · dr both directly and using Green’s theorem.

[1]
Sometimes also Kelvin-Stokes theorem, depending on the dimension of space...
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The theorem is more nicely rewritten using a new symbol. If S is any
surface, we’ll say the curve ∂S is its boundary. Of course, there are two senses
of orientation to a curve, which one to choose? We pick up this criterion: the
right hand rule. If you run with your fingers along the curve, your thumb points
in the normal direction of the surface. With this in mind,

∫

S

∇× v · dS =

∫

∂S

v · dS

This is our first example of the renowned Stokes theorem.

When a vector field is a curl?

Let us consider the curl of any vector field, ∇ × v. You know that it is
again a vector because of the lucky coincidence that we’re in dimension 3. But
let’s go on, you’ll have time to ponder about that in your later inquires in
maths... There are some nice properties to it. The first of them comes from
Green’s theorem. Suppose that we prepare a surface without boundary. What
is then the flux of ∇× v through it? It’s not hard to find out:

∫

S

∇× v · dS =

∫

∂S

v · dS = 0

because ∂S = 0. So: the flux of any curl field on any closed surface is zero. In
other words: all field lines are closed!
This property of no-flux is nice from a physical point of view: magnetic

fields lines are closed, and also for velocity fields of incompressible fluids without
sources or sinks. So, both B and v, in such cases, can be written as the curl of
other vector fields, which are usually called vector potentials.

Anyway, let us do the same as before, and try to find out when a given
vector field v is the curl of another. We’ll work with a very small cube, as in
figure 4, with faces parallel to the coordinate planes, and dimension dxdydz.
So, the flux of v through that elementary cube is found that way. Let us

consider first the two faces which are perpendicular to the x-axis, call them
X+ and X−. We will assume that the faces are so small that the field takes a
constant value on each of them. The surface vector dS is pointing in opposite di-
rections: in one dSX+ = (dydz, 0, 0) and in the other is dSX−

= (−dydz, 0, 0).
The flux on these two faces are:

Φx = v(X+) · dSX+ + v(X−) · dSX−
= vx(X+)dydz − vx(X−)dydz
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Figure 4. Flux through an elementary cube.

OK? But now, the values of vx at X+ and X− are not so different, come
on. They’re separated a distance dx, so we can do a Taylor development for
vx(X+) in terms of the other:

vx(X+) = vx(X−) +
∂vx

∂x
dx

So we have, for these two faces:

Φx =
∂vx

∂x
dxdydz

Now, for the other two coordinates the same reasoning holds, and we get

Φ =

(

∂vx

∂x
+

∂vy

∂y
+

∂vz

∂z

)

dxdydz

If the field v is the curl of somebody else, then that scalar quantity in
parenthesis should vanish. We will call it divergence of a vector field and
shorthand it like ∇ · v for obvious reasons. This way:

• If v is the curl of some vector field, then ∇ · v = 0.

But from this reasoning we have learnt something that applies to all vector
fields, not just “curls”. Suppose that you have a large surface, and you split
it into small “cubes”. By a reasoning analogous to the one above, the sum of
the fluxes through all small cubes equals the flux through the exterior surface,
because all the inner faces cancel out (for one “cube” it is positive, for the
neighbour it is negative). This is true also if the cubes are infinitesimal. This
way we get what is known as Gauss thorem: if V is any volume and ∂V is
its boundary (a closed surface), we get
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∫

∂V

v · dS =

∫

V

∇ · v dV

So, what is the physical meaning of the divergence? We said that a vector
is a curl when it has no sources or sinks. And a curl vector field has no diver-
gence. So the divergence must amount for those sources and sinks. Imagine
a compressible fluid: the velocity field has positive divergence where the fluid
is getting expanded, and negative where it is getting compressed. Also, the
electric field has positive divergence in places where there is a positive charge.

E3. Consider the unit cube in space, and the velocity field v(x, y, z) =
(x, 0, 0). Check Gauss’ theorem.

A glimpse of Stokes theorem

(This section is missing at this stage...)


