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Estimated Time of Arrival

You’re downloading a file from... somewhere. You see the speed in your
screen, and you want to guess when it’s going to finish, the estimated time of
arrival (ETA). Let’s say that you must download A Mb, and the speed is v
Mb/s. Then, your ETA is just A/v, right?
But life is not so simple. You realize that the speed is decreasing. It is

“accelerating” at a rate aMb/s every second (Mb/s2). So you should “update”
your estimate. How?
Let us call f(t) the function which gives us the amount of information

downloaded as a function of time. Then, our first approximation was to consider
a linear f(t) = A − vt. In the second case, we know the curve should “bend”
somehow.
We’d like to see a function f(t) which has a constant “acceleration”. But

the acceleration is the derivative of the velocity, so the derivative of the deriva-
tive, so the second derivative of the function. We want f′′(t) = c. Which
functions, when twice derivated yield a constant? The parabolas.
So we propose f(t) = A−vt−kt2, for some k. A little work (do it!) shows

that k = a/2. So, f(t) = A− vt − at2/2. This way you update your estimate
for the ETA by solving f(t) = 0.
But real life is always more complicated. Now you find that the accelera-

tion is also changing with time! This is real life. How to give an accurate value
for the ETA? This is the problem that we’re trying to solve.

Approximating

When we introduced the derivatives, we showed how the tangent line can
be used as a local approximation to the real function. By local we mean, near
the “tangent point”. But there is a problem: the real function “bends”, it is
curved, while the tangent line is straight, so they detach more and more as you
go away from that tangent point.
We can do better. What about trying to use, instead of the straight line,
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another function which is also simple but it also bends? I don’t know about
you but, for me, the second best after the straight line, is the parabola.
So, let’s review the idea of the tangent line, and we’ll see how to generalize

it. Consider the original function f(x), a point x = x0 and the tangent line
p1(x) = a0 + a1(x− x0) fulfills two conditions:
(c1) At x = x0, both functions take the same value: p1(x0) = a0 = f(x0).
(c2) At x = x0, both functions have the same slope: p

′

1(x0) = a1 = f′(x0).
This way we find the explicit expression:

p1(x0) = f(x0) + f′(x0)(x− x0)

We could say, OK, let’s add one more level, say p2(x) = a0+a1(x− x0)+
a2(x− x0)

2, and ask three conditions. The two previous ones and a third one.
(c3) At x = x0, both functions have the same acceleration.
The two first conditions give the same result! That’s nice. And the third

yields:

p′′

2(x0) = 2a2 = f′′(x0)

Everything is nice, but the factor two... Is there any easy way to explain
it?

The Derivatives of a Polynomial

Now imagine a polynomial of this form:

pn(x) = a0 + a1(x− x0) + a2(x− x0)
2 + a3(x− x0)

3 + · · ·+ an(x− x0)
n

At x = x0, pn(x0) = a0, that’s easy. Now, the derivatives:

p′

n(x) = a1 + 2a2(x− x0) + 3a3(x− x0)
2 + · · ·+ nan(x− x0)

n−1

We evaluate at x = x0 and all the terms vanish except the first one, so
p′

n(x0) = a1. Now, the second derivative:

p′′

n(x) = 2a2 + 3 · 2a3(x− x0) + · · ·+ n(n− 1)an(x− x0)
n−2

Evaluating at x = x0 we get p
′′

n(x0) = 2a2. For the third derivative, we
get
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p′′′

n (x) = 3 · 2a3 + · · ·+ n(n− 1)(n − 2)an(x− x0)
n−3

So, p′′′

n (x0) = 3 · 2a3. It’s easy to see that, in general,

p(k)n = k!ak

Taylor Polynomials

Now we have all the parts of the puzzle, we only have to put them together.
We know that, for a polynomial of the previous form, the k-th derivative is k!ak.
Given a function f(x), we will design a polynomial whose first n derivatives
coincide at x0. The more derivatives we fit, the more the two functions will
look alike. The explicit formula for Taylor’s polynomial is this:

f(x0)+f
′(x0)(x−x0)+

f′′(x0)

2
(x−x0)

2+
f′′′(x0)

3!
(x−x0)

3+· · ·+ f(n)(x0)

n!
(x−x0)

n

Remember that the numbers f(x0), f
′(x0) are only numbers, not functions!!

We can summarize that formula in a single expression:

n
∑

k=0

f(k)(x0)

k!
(x− x0)

k

Buff... Let’s do an example, otherwise it’ll never be clear. We take the
f(x) = sin(x) function. We’ll take x0 = 0 for simplicity. Now, let’s evaluate
the function and its derivatives.

f(x) = sin(x) → f(0) = 0

f′(x) = cos(x) → f′(0) = 1

f′′(x) = − sin(x) → f′′(0) = 0

f′′′(x) = − cos(x) → f′′′(0) = 1

Enough for now. Let us make up the polynomial, with those data. Using
a direct application of the previous formula we get:

sin(x) ≈ x− x3
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Do you see it? Now, let’s plot the two functions so that you see the
differences:

See? They really look alike near the zero!

If we fit more and more derivatives, the polynomial and the function look
more and more alike. Thus, we might ask what happens if we write a polyno-
mial with “infinite order”. How to do it? Doing the infinite derivatives.

A little thought shows that the derivatives of f(x) = sin(x) at x = 0 follow
a certain pattern: 0, 1, 0,−1 and then repeating. So, we may write the whole
polynomial, for n → ∞:

sin(x) = x− x3

3!
+

x5

5!
− x7

7!
+

x9

9!
− · · ·

If we want to write this in a closed formula, we can:

sin(x) =

∞
∑

i=1

(−1)i
x2i−1

(2i− 1)!

This is not called a polynomial, since polynomials should always have finite
order. This is called a Taylor series.

Analytical Functions

Although this last formula is not going to be much used. But the funny
thing is that, if all derivatives coincide, that “infinite polynomial” (we prefer
to call it series) should coincide exactly with the sine function, right? OK,
we have to be careful with this. It’s not true for all functions, but it’s true
for many. When it does, when the function coincides exactly with its (infinite
order) Taylor polynomial, we call it analytical.

What does it mean to be analytical? A lot! Consider it this way: if a
function is known to be analytical, it can be rebuilt from its value at a point
and all its derivatives at that very point. So, in a sense, a local study, only
taking into account the vecinity of that point, allows us to rebuild the function.
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It’s as if you could rebuild the image of a person from a skin cell! It means,
basically, the function is amazingly regular, and it bears no surprises.

For example, if a function has a jump (f(x) = 0 if x < 0 and 1 if x ≥ 0),
then the function is not analytical. If you study its value and all its derivatives,
say at x = −1, then you will think that it is function zero... and it is not. It
was not possible to predict the “jump” in the function from a study, no matter
how careful, of the vicinity of x = −1.

On the other hand, let’s take f(x) = (x− 1)−1. It is analytical everywhere
except x = 1. This means that, by a careful study of the function and all its
derivatives at x = 0 you can guess that it has a pole at x = 1. This is one of
the magical things of higher mathematics...

Computing Taylor Series

There is a basic trick in order to compute Taylor series: use whatever you
have at hand and any way you reach is valid. OK, this is not a trick, is more
like a philosophy... Let’s try to put it to practice.

Let’s start with the simplest possible series: 1+ x+ x2+ x3+ · · ·. We can
sum that, it’s just a geometric series. If |x| < 1,

1+ x+ x2 + x3 + · · · = 1

1− x

So we get the first conclusion, the Taylor polynomial of (1 − x)−1 is just
∑

i x
i. OK. Now, we can derivate the polynomial, and that would be the same

as derivating the function, no?

1+ 2x+ 3x2 + 4x3 + · · · = 1

(1− x)2

So, you see what I mean. Any way is valid. You can follow the normal
derivation path, and you’ll find exactly the same.

But we can also take the anti-derivative of (1− x)−1 (OK, integral, that’s
the same), and get − log(1 − x) (plus a possible constant). Doing also the
anti-derivative for all terms of the polynomial we get:

x+
x2

2
+

x3

3
+ · · · = − log(1− x) + K

Substituting both terms at x = 0 we get that K = 0. So, another polyno-
mial, almost for free!
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OK, let’s do some derivatives, but without much effort. The function
which, under derivation, remains always the same exp(x). All the derivatives
at x = 0 are equal to 1, so we have

exp(x) = 1+ x+
x2

2!
+

x3

3!
+ · · · =

∞
∑

n=0

xn

n!

(where we’ve used the usual convention that 0! = 1.) This way we get another
way of computing e:

e = exp(1) = 1+ 1+
1

2
+

1

3!
+ · · · =

∞
∑

n=0

1

n!

Now, let’s go for a polynomial evaluated away from zero. Let us consider,
for example, f(x) = x3+2x2+5, and we need to express that same polynomial
as a sum of powers of (x− 2). How to do it? Easy: we take the Taylor series
at x = 2. So we evaluate the derivatives there:

f(x) = x3 + 2x2 + 5 → f(2) = 23

f′(x) = 3x2 + 4x → f′(2) = 20

f′′(x) = 6x+ 4 → f′′(2) = 16

f′′′(x) = 6 → f′′′(2) = 6

From that moment on, all the derivatives are zero so the Taylor series
terminates. We can write it in full:

f(x) = 23 + 20(x− 2) +
16

2
(x− 2)2 +

6

3!
(x− 3)3

If a Taylor series is computed around x = 0 it is customary to give a
different name to it, and call it a Maclaurin series.

Now, a different story. What about using Taylor polynomials to compute
square roots? OK, we have a try by normal derivation of f(x) = x1/2. But
the first derivative gives a surprise: f′(x) = (1/2)x−1/2, so f′(0) is... infinite?
Yes, it is. The parabola x2 has a minimum at zero, so its inverse function has
infinite slope at the origin!
Therefore, we have to do something. What about developing around x =

1? We also know how to compute everything there... Please, do the calculations
yourself to get convinced that, around x = 1,
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√
x = 1+

1

2
(x− 1)− 1

8
(x− 1)2 +

1

16
(x− 1)3 − 5

128
(x− 1)4 + · · ·

First, let us estimate
√
2 from there, using x − 1 = 1, of course. We get

1′398, OK, not too bad. It improves with more terms, of course.

Can we get an estimate of the error when approximating a function with
its Taylor polynomials? Yes, but we’ll need integral theory for that, so we leave
it until then...

If you have a product of functions, then you should multiply the series
for each of them. For example, to find the polynomial, up to order 3, of
f(x) = ex sin(x), we do not derivate. We write the series for them both:

f(x) =

(

1+ x+
x2

2
+

x3

6
+ · · ·

)(

x− x3

6
+ · · ·

)

We do the products, only retaining powers equal or less than three:

f(x) = x+ x2 +
x3

3
+ · · ·

Obviously, we have not generated the “full pattern” (i.e.: the series), but
we did what we were asked for.

Another example would be to compute the series of a composite func-
tion. For example, f(x) = exp(sin(x)). It is quite different. In this case, we
substitute the series for the sine inside each x in the series for exp(x):

f(x) = 1+ sin(x) +
sin(x)2

2
+

sin(x)3

6
+ · · ·

So, now we substitute, some algebra, and up to degree 3 we get:

f(x) ≈ 1+ x+
x2

2
+ · · ·

(and the term in x3 vanishes).

Limits using Taylor

Consider the following limit:
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L = lim
x→0
(1+ x− sin(x))1/x

3

It has the form 1∞, therefore it will yield, most likely, eα for some α...
But near the vicinity of x = 0, sin(x) ≈ x− x3/6, so we have

L = lim
x→0

(

1+ x− x+
x3

6
+ · · ·

)1/x3

Wonderful, the limit is now trivial: L = e1/6. Using L’Hôpital and other
methods, the problem becomes much harder...

So, the lesson: try to approximate a function by its Taylor series, and
find out the leading term. Be careful: don’t neglect terms unless you are sure
they’re useless! For example, if we had substituted sin(x) ≈ x naively, the
limit would have been wrong!

How Much Error?

So, we know we can approximate f(x) by its Taylor polynomial of order n.
But, how good is the approximation? Here we won’t give a proof for this, but
clever application of mean value theorem, or a less clever but faster application
of integration by parts gives you an estimate for the error made. The difference
between the n-th order Taylor polynomial around x = a and the real function
is equal to the remainder:

Rn,a(x) =
f(n+1)(t)

(n+ 1)!
(x− a)n+1

for some value of t in the interval [a, x]. So, all you have to do to estimate the
error is to give a bound for the n+ 1-th derivative of the function.
An example. We approximate sin(1) by the 5-th order polynomial:

sin(1) ≈ 1− 1

6
+

1

120
= 0′84167

In order to evaluate the error we compute the remainder. The sixth deriva-
tive of the sine is the cosine again, so

R5,0 =
cos(t)

6!
x6
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But x6 = 1 in our case. We have to bound the cosine function in the [0, 1]
interval, which is easy: cos(t) ≤ 1 for sure. So we get R5,0 < 1/6! = 0′00139.
Effectively, the real value for sin(1) ≈ 0′84147, and the real difference is 0′0002.
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